STEM CELLS EMBRYONIC STEM CELLS Copy Number Variant Analysis of Human Embryonic Stem Cells
نویسندگان
چکیده
Differences between individual DNA sequences provide the basis for human genetic variability. Forms of genetic variation include single nucleotide polymorphisms (SNPs), insertions/duplications, deletions, and inversions/translocations. The genome of human embryonic stem cells (hESCs) has been mainly characterized by karyotyping and comparative genomic hybridization (CGH), techniques whose relatively low resolution at 2 – 10-Mb cannot accurately determine most copy number variability, which is estimated to involve 10 – 20% of the genome. In this brief technical report we examined HSF1 and HSF6 hESCs using array-CGH (aCGH) to determine copy number variants (CNVs) as a higher resolution method for characterizing hESCs. Our approach utilized 5 samples for each hESC line and showed 4 consistent CNVs for HSF1 and 5 consistent CNVs for HSF6. These consistent CNVs included amplifications and deletions that ranged in size from 20-Kb to 1.48Mb involving 7 different chromosomes, were both shared and unique between hESCs, and were maintained during neuronal stem/progenitor cell differentiation or drug selection. Thirty HSF1 and 40 HSF6 less consistently scored but still highly significant candidate CNVs were also identified. Overall, aCGH provides a promising approach for uniquely identifying hESCs and their derivatives and highlights a potential genomic source for distinct differentiation and functional potentials that lower resolution karyotype and CGH techniques could miss.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملComparing the Expression Levels of Alkaline Phosphatase, Gfra1, Lin28, and Sall4 Genes in Embryonic Stem Cells, Spermatogonial Stem Cells, and Embryonic Stem-Like Cells in Mice
Background and purpose: Spermatogenesis is a well-organized process that is influenced by a variety of factors. Alkaline phosphatase, and Gfra1, Lin28, and Sall4 genes are among the key players in this interconnected process. This study aimed to investigate the expression levels of Gfra1, Lin28, and Sall4 genes in embryonic, spermatogonial, and embryonic stem-like (ES-like) cells in mice. Mate...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملEvaluation and Comparison of the Expression Levels of the ZBTB16 (Plzf) and ZFP Genes and Alkaline Phosphatase in Three Cell Populations: Mouse Spermatogonial Stem Cells, Embryonic Stem-Like Cells (Es-Like), And Embryonic Stem Cells
Introduction: One of the vital enzymes during spermatogenesis, which is one of the pluripotency factors of stem cells and contributes to maintaining their pluripotency is alkaline phosphatase. ZBTB16 and ZFP proteins are critical elements in stem cells which are expressed in pluripotent stem cells and maintain their pluripotency due to their role in messaging pathways. Material & Methods: The ...
متن کاملReprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells
The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...
متن کامل